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1. Introduction

Three-dimensional superconformal theories have been studied intensively recently in view

of their relevance to describing the dynamics of multiple M2-branes [1]. The starting point

of this development was the construction of the N = 8 supersymmetric models by Bagger

and Lambert [2 – 4] and Gustavsson [5, 6]. These models are invariant under the symmetries

of the OSp(8|4) superconformal algebra [7]. However, under certain assumptions, there is

only a single N = 8 model with SO(4) gauging [8, 9].

A way to obtain more general gauge groups is to consider models with less supercon-

formal symmetry, like N = 1, 2 [10 – 13], N = 3 [14, 15] or N = 4 [16 – 18]. A particularly

interesting class of models are the N = 6 models with SU(N) × SU(N) gauge groups [19].

Recently, three papers have appeared that deal with the general construction of N = 6 su-

perconformal theories. First of all, in [20] N = 6 superconformal models were constructed

starting from N = 4 supersymmetry with special matter multiplets and making use of a

relation with Lie superalgebras [16]. Secondly, in [21] a general framework for construct-

ing N = 6 superconformal gauge theories using the three-algebra approach was presented.

Finally, a group-theoretical classification of the gauge groups and matter content of N = 6

superconformal gauge theories was given in [22].

In this note we wish to approach the construction of three-dimensional superconformal

gauge theories for all values of N by making use of a relation with gauged supergravity [23,

24]. Three-dimensional gauged supergravities have been constructed using the so-called

embedding tensor technique. This method was originally developed in the construction of

maximal N = 16 supergravities [25, 26], where the most general N = 16 gaugings encoded
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in the “embedding tensor” were classified. The role of this tensor is to specify which

subgroup of the global symmetry group is gauged and which vectors are needed to perform

this gauging. Later, the same technique was applied to construct the matter-coupled half-

maximal N = 8 theory [27, 28] as well as the N < 8 theories [28].

In [24] it was shown how the N = 8 model of [2 – 6] can be obtained by taking an

appropriate limit to global supersymmetry of the N = 8 supergravity model of [27, 28].

We will refer to this limit as the conformal limit. We consider here the conformal limit of

all the other gauged supergravity models. In general, the embedding tensor characterizing

the superconformal theory satisfies a set of linear and quadratic constraints. We show how

these constraints can be determined from gauged supergravity by taking the conformal limit

and find agreement with all known structures. Furthermore, we present a systematic way

to solve these constraints, which reproduces the classification of superconformal theories

for different values of N given in the recent literature [16, 18, 20, 22]. Furthermore,

inspired by a connection between superconformal gauge theories and Lie superalgebras

observed in [16], we construct new N = 4, 5 superconformal theories that are based on the

exceptional Lie superalgebras F (4), G(3) and D(2|1;α) with α a free parameter. They lead

to superconformal theories with SO(7) × Sp(1), G2 × Sp(1) and SO(4) × Sp(1) gaugings,

respectively1.

One advantage of the supergravity approach is that the same idea can be used to

obtain non-conformal theories as well by taking other limits. A particularly interesting

class of models is obtained by taking the limit of a gauged supergravity where the gauge

group lies entirely within the R-symmetry group. As was shown in [24] for the N = 8 case,

such gaugings do not survive the limit to global conformal supersymmetry but give rise to

massive deformations instead. These are important to test the idea of multiple M-branes

and have been considered for N = 8 [29, 30] and N = 6 [20, 31, 32].

This work is organized as follows. In section 2 we discuss the conformal limit and show

how the properties of the embedding tensor characterizing superconformal theories in three

dimensions can be derived from gauged supergravity. In particular, we derive the linear

and quadratic constraints these tensors must satisfy for different values of N . In section 3

we perform a systematic analysis of these constraints and derive the possible gauge groups

and matter content. Next, we work out the details of our method for the specific example

of N = 6 supersymmetry in section 4. Finally, in section 5 we present our conclusions. In

particular, we comment on the possible massive deformations. Appendix A explains our

notation and conventions.

2. Superconformal gaugings in three dimensions

2.1 Gauged supergravity

We begin with a review of the possible gauged supergravity theories in three dimensions

with different numbers N of supersymmetries. We are interested in theories with N ≤ 8

1We thank J. Park for a stimulating discussion regarding the case of F (4).
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N Ĝ Ĥ dim[Ĝ/Ĥ]

8 SO(8, N) SO(8) × SO(N) 8N

6 SU(4, N) S(U(4) × U(N)) 8N

5 Sp(2, N) Sp(2) × Sp(N) 8N

4 Sp(1, N) × Sp(1, N ′) Sp(1) × Sp(N) × Sp(1) × Sp(N ′) 4N + 4N ′

3 Sp(1,N) Sp(1) × Sp(N) 4N

2 SU(1, N) S(U(1) × U(N)) 2N

1 SO(1, N) SO(N) N

Table 1: The isometry and isotropy groups Ĝ and Ĥ of the symmetric scalar manifolds of three-

dimensional N -extended supergravity and their dimensions. For N ≤ 4 we have just included a

particular series of symmetric spaces, as it turns out that these contain the most general global

limit to flat target spaces.

as these have matter multiplets (in addition to the supergravity multiplet) and allow for a

limit to a globally supersymmetric field theory.

Three-dimensional supergravity theories differ from their higher-dimensional relatives

in that all bosonic degrees of freedom can be described by scalar fields. These can be seen

as coordinates of a manifold, on which supersymmetry imposes a number of geometric

conditions [33]. For N > 4 these are strong enough to completely fix the (ungauged)

theory: the scalar manifolds are given by certain symmetric spaces of the form

M =
Ĝ

Ĥ
, (2.1)

where Ĝ is a simple Lie group of isometries, and Ĥ is its maximal compact subgroup. For

lower values of N , the scalar manifolds can be more general manifolds such as quaternionic,

Kähler and Riemannian manifolds. However, for our purposes it will be sufficient to con-

sider certain symmetric spaces for N ≤ 4 as well. The different cases are summarised in

table 1. Note that the N = 4 scalar manifold consists of a product of two quaternionic

spaces. This possibility occurs due to the existence of two inequivalent N = 4 matter

multiplets, hyper and twisted hyper multiplets. For other values of N there is a unique

matter multiplet.

Turning to gauged supergravity, it is important to note that a special D = 3 feature is

that the gauge vectors have no independent kinetic term but only occur via a Chern-Simons

term. In this way they do not introduce new degrees of freedom but are dual to the scalar

fields. More precisely, one can introduce as many vector fields as there are isometries on

the scalar target space.

The possible gaugings of D = 3 supergravity theories have been classified using the

embedding tensor approach [25, 26, 28]. The embedding tensor Θαβ = Θβα takes values in
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the symmetric product of two adjoint representations of the global symmetry group Ĝ:

Θ ∈ (Adj(Ĝ) ⊗ Adj(Ĝ))symm , (2.2)

and relates gauge vectors to generators of Ĝ. The associated transformations are then

gauged due to the introduction of the embedding tensor in covariant derivatives which

take the general form

Dµ = ∂µ −Aµ
α Θαβ t

β , (2.3)

for some representation matrices tβ of Ĝ. Note that Xα = Θαβt
β denote the generators

whose symmetries are being gauged. Also, the embedding tensor appears as a metric in

the Chern-Simons term

LCS = −
1

2
εµνρAµ

αΘαβ

(

∂νAρ
β −

1

3
Θγδf

βδ
ǫAν

γAρ
ǫ

)

, (2.4)

with vector fields transforming in the adjoint of Ĝ and the structure constants fαβ
γ of

the global symmetry group Ĝ. In supergravity there is a number of restrictions on which

transformations can be gauged. These can be succinctly summarised in terms of a linear

and a quadratic constraint on the embedding tensor.

The quadratic constraint follows from the requirement that the embedding tensor itself

is invariant under the transformations that are gauged due to the introduction of Θ. This

condition takes the same form for all values of N :

ΘαβΘγ(δ f
αγ

ǫ) = 0 . (2.5)

In case the embedding tensor projects onto a semisimple subgroup of Ĝ and is expressed in

terms of invariant tensors of that subgroup, the quadratic constraint (2.5) is automatically

satisfied.

The linear constraint on the embedding tensor follows from supersymmetry. In other

words, it is perfectly consistent to introduce gaugings that do not satisfy the linear con-

straint, but these will not preserve supersymmetry. As it follows from the requirement of

supersymmetry, this condition takes a different form for different values of N :

N = 8 supergravity: the embedding tensor takes values in the symmetric product of

the adjoint of Ĝ = SO(8, N). Representing the adjoint index α by a pair of antisymmetric

fundamental indices, i.e. α = [AB], the embedding tensor is of the form Θ[AB],[CD] and in

terms of SO(8, N) Young tableaux2 decomposes according to

( ⊗ )symm = 1 ⊕ ⊕ ⊕ . (2.6)

Supersymmetry requires absence of the last representation corresponding to the window

tableau.

2Here, we use Young tableaux of SO(8,N) in which symmetrization refers to traceless symmetrization,

such that the representations are irreducible.
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N = 6 supergravity: the embedding tensor takes values in the symmetric product of

the adjoint of Ĝ = SU(4, N). Representing the adjoint index α by a lower fundamental

index A and an upper anti-fundamental index B, i.e. α = (A,
B), the embedding tensor is

of the form ΘA
B ,C

D and in terms of SU(4, N) Young tableaux decomposes according to 3:

( ⊗ )symm = 1 ⊕ ⊕ ⊕ . (2.7)

As supersymmetry requires the last representation to vanish, the embedding tensor is anti-

symmetric in its lower two indices: ΘA
B

, C
D = Θ[A

B
, C]

D.

N = 5 supergravity: the embedding tensor takes values in the symmetric product of

the adjoint of Ĝ = Sp(2, N). Representing the adjoint index α by a pair of symmetric

fundamental indices, i.e. α = (AB), the embedding tensor is of the form Θ(AB),(CD) and

in terms of Sp(2, N) Young tableaux decomposes according to

( ⊗ )symm = 1 ⊕ ⊕ ⊕ . (2.8)

The last representation again has to be absent for supersymmetric gaugings, leading to the

following constraint on the embedding tensor: Θ(AB,CD) = 0.

N = 4 supergravity: in this case the embedding tensor consists of three parts. One

part, ΘAB,CD, takes values in the symmetric product of the adjoint of Sp(1, N) and satisfies

the analogous conditions as for N = 5. Similarly, the other part ΘA′B′,C′D′ takes values in

the symmetric product of the adjoint of Sp(1, N ′) and is subject to the same conditions.

The last part, ΘAB,C′D′ takes values in the product of the adjoints of both factors of the

global symmetry group Ĝ and is not subjected to any linear constraint. However, it does

have to satisfy a quadratic condition:

ΘαβΘγǫ′f
αγ

δ + Θα′βΘγ′δf
α′γ′

ǫ′ = 0 , (2.9)

and similar for (α↔ α′).

N ≤ 3 supergravity: in these cases supersymmetry does not impose any linear con-

dition: all consistent gaugings (satisfying the quadratic constraint) are compatible with

supersymmetry. In addition, for N = 1, 2, there are deformations that do not correspond

to any gauging but to the introduction of a superpotential instead [28].

There are in general two strategies to solve the set of linear and quadratic constraints

on the embedding tensor. Either one starts from an embedding tensor which projects onto

a given subgroup by means of an invariant tensor such that the quadratic constraint is

automatically satisfied. In this case, the linear constraint becomes a non-trivial identity

which decides if the gauging is a viable one. Alternatively, one may start from the general

solution of the linear constraint which can directly be expressed in terms of the proper

subrepresentations. Then, the quadratic constraint becomes a non-trivial identity which

3We use here a notation where a (barred) Young tableau denotes (upper) lower indices of a tensor and

traces are subtracted.
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N G HR dim[RcN ]

8 SO(N) SO(8) 8N

6 U(N) SU(4) 8N

5 Sp(N) Sp(2) 8N

4 Sp(N) × Sp(N′) Sp(1) × Sp(1) 4N + 4N ′

3 Sp(N) Sp(1) 4N

2 SU(N) U(1) 2N

1 SO(N) 1 N

Table 2: The global symmety and R-symmetry groups G and HR of three-dimensional N -extended

field theory and the dimension of the flat scalar manifolds.

selects the proper gaugings. In both cases the embedding tensor represents the Cartan-

Killing metric of the gauge group (at least for semi-simple gaugings [28]). However, while

in solving the quadratic constraint first, we can specify the Cartan-Killing metric in a

preferred basis, e.g. the diagonal one, if we solve the linear constraint first instead, the

subsequent solution of the quadratic constraint, if it exists at all, yields the Cartan-Killing

metric in a particular basis over which we no longer have control, e.g. it may emerge in a

non-diagonal basis.

2.2 The conformal limit

We now turn to the conformal limit, whose aim is to extract superconformal theories from

the gauged supergravities discussed above. This limit was performed explicitly for N = 8

in [24] and will be generalised here to lower values of N .

It will be instructive to first discuss the limit to global supersymmetry in the ungauged

case. Upon sending Newton’s constant to zero, the supergravity and matter multiplets

decouple, and the former will be set to zero. The resulting theory for the matter multiplets

has N global supersymmetries. The isometry groups of supergravity, see table 1, can be

seen to split up into three parts. Its compact part, which is the product of the R-symmetry

group HR = SO(N ) and its orthogonal complement G, are unaffected by the global limit.

In contrast, the non-compact generators reduce to nilpotent generators that transform

under the compact parts:

Ĝ→ (G×HR) ⋉ R
cN , (2.10)

for integer N and where c = 1, 2, 4 or 8 depending on the size of the matter multiplet of

N -extended supersymmetry. The resulting groups are summarised in table 2.

Our notation is as follows: the fundamental representation of Ĝ splits up according to

A = (I, a), where I is the fundamental representation of the R-symmetry groupHR and a of
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the global symmetry group G. The scalar fields correspond to the non-compact generators

and are denoted by XIa. As these correspond to nilpotent generators, the associated scalar

manifolds are flat in all cases we consider and the group G acts as their global symmetry.

For N = 4 one gets two copies of flat manifolds, composed of the two different types of

matter multiplets.

In addition to ungauged theories with global supersymmetry, one can also obtain their

gauged counterparts from supergravity. As shown in [24], one can derive N = 8 conformal

as well as non-conformal gaugings and even massive deformations from the corresponding

supergravity by taking the proper global limit. In the case of conformal gaugings, it can be

seen that this requires the embedding tensor Θ to be a singlet of the R-symmetry group,

i.e. to only take values in the symmetric product of the adjoint of the global symmetry

groupsG. Only the components Θab,cd lead to a conformal gauging, while other components

can lead to non-conformal gaugings and/or massive deformations. Indeed, in the analysis

of [24] it was found that the other components of the embedding tensor have to be rescaled

with Newton’s constant in order to avoid singular terms. This rescaling changes the mass

dimension of these components, such that they have exactly the mass dimension of non-

conformal gaugings and/or massive deformations. The components Θab,cd that we will

retain do not require such a rescaling and indeed correspond to conformal gaugings.

It remains to be seen which components Θab,cd can be obtained from gauged super-

gravity. In [24] it was found for N = 8 that only the four-form representation in (2.6)

gives rise to conformal gaugings. The other representations in (2.6) give rise to non-zero

values for other components of the embedding tensor, involving the R-symmetry directions,

and hence they spoil the conformal invariance. Therefore for N = 8 globally supersym-

metric field theories we obtain conformal gaugings parametrised by an embedding tensor

in the four-form representation of the global symmetry group G, which is SO(N) for the

case of global supersymmetry. This is in precise agreement with the findings in the direct

construction [2 – 4, 23].

A short analysis reveals that the situation is slightly different for the theories with less

than N = 8 supersymmetry, in that one can use all representations of the supergravity

embedding tensor to obtain conformal gaugings 4. These are therefore classified by exactly

the same representations that solve the linear constraint in the supergravity case, except

that the linear constraint now refers to G instead of Ĝ. Similarly, the quadratic constraint

takes the same form (2.5), but where the structure constants refer to G instead of Ĝ as

well. In more detail, we find the following conditions for the different cases:

N = 8 field theory: the embedding tensor takes values in the following representation

of G = SO(N):

, (2.11)

4The reason is that for lower N , the corresponding components in the embedding tensor can be excited

independently without inducing components in other blocks of the embedding tensor, see the appendix

of [28] for the detailed decompositions. For N = 8 in contrast, a non-vanishing component within

SO(N) induces components in the non-compact part of the embedding tensor which spoil the global limit.
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and as a consequence is totally anti-symmetric

Θab,cd = Θ[ab,cd] . (2.12)

With the SO(N) structure constants

fab,cd,
ef = −2δ[a[eδ

b][cδd]
f ] , (2.13)

the quadratic constraint (2.5) takes the explicit form

Θab,e
gΘcd,gf + Θab,c

gΘef,gd − Θab,f
gΘcd,ge − Θab,d

gΘef,gc = 0 . (2.14)

N = 6 field theory: the embedding tensor takes values in the following representations

of G = U(N):

1 ⊕ ⊕ , (2.15)

and therefore it satisfies the linear constraint

Θ(a
b
, c)

d = 0 . (2.16)

With the U(N) structure constants

fa
b, c

d, f
e = i

(

δc
bδa

fδe
d − δa

dδc
fδe

b
)

, (2.17)

the quadratic constraint (2.5) takes the explicit form

Θc
g,e

f Θg
d,a

b − Θg
d,e

f Θc
g,a

b + Θa
g,e

f Θg
b,c

d − Θg
b,e

f Θa
g,c

d = 0 . (2.18)

N = 5 field theory: the embedding tensor takes values in the following representations

of G = Sp(N):

1 ⊕ ⊕ , (2.19)

and hence satisfies the linear constraint

Θ(ab,cd) = 0 . (2.20)

With the Sp(N) structure constants

fab,cd,
ef = −2δ(a(eΩ

b)(cδd)
f) , (2.21)

the quadratic constraint (2.5) takes the explicit form

Ωgh (Θab,egΘhf,cd + Θab,fgΘhe,cd + Θab,cgΘhd,ef + Θab,dgΘhc,ef) = 0 . (2.22)

N = 4 field theory: as in the N = 4 supergravity case, the embedding tensor consists

of three parts, Θab,cd, Θa′b′,c′d′ and Θab,c′d′ that take values in the products of the adjoints

of Sp(N) and Sp(N ′). The former two consist of the same representations (2.19) as in the

N = 5 case, while the latter is unconstrained. The quadratic constraints (2.5) and (2.9)

can also be written in a form analogous to (2.22) using the Sp(N) and Sp(N ′) structure

constants.
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N ≤ 3 field theory: as in the N ≤ 3 supergravities, the embedding tensor can take

arbitrary values in the symmetric product of the adjoints of G. All consistent gaugings

(satisfying the quadratic constraint) are compatible with supersymmetry.

In this way we have obtained a classification of the possible superconformal gaugings

for different values of N in a uniform way, starting from the classification of the possible

gaugings of supergravity. Of course, one still needs to solve the constraints for the embed-

ding tensor. As we have discussed above, there are in general two approaches to solve these

constaints, starting by either choosing for Θ the projector onto a subgroup, or by solving

the linear constraint on the embedding tensor first. In both cases, one set of constraints is

trivially satisfied while the other one becomes a non-trivial identity. Both approaches have

been pursued in the literature and depending on the point of view, the remaining constraint

(which is the linear one in the superpotential formalism of [16, 20] and the quadratic one

in the 3-algebra formalism of [3, 5, 21]) has been referred to as the fundamental identity,

respectively.

It is interesting to compare our results to those obtained recently by the mechanism of

supersymmetry enhancement. In this approach one starts from the superconformal theories

with N ≤ 3 for which there is no restriction on the gauge group and the representation of

the matter multiplets. In our context, this corresponds to the absence of a linear constraint

on the embedding tensor. It was found that supersymmetry could be enhanced to N = 4 by

certain restrictions on the gauge group and its representations [16]. These correspond to the

linear constraint Θ(ab,cd) = 0. Subsequently, it was noted that twisted hypermultiplets could

be added and in fact are necessary for further supersymmetry enhancement [18, 30]. The

untwisted and twisted sector have to be taken identical to gain one further supersymmetry.

In our notation, this corresponds to the identification of the three parts of the N = 4

embedding tensor leading to one N = 5 embedding tensor Θab,cd subject to the same linear

constraint (2.20). Yet further enhancement to N = 6 and N = 8 is possible by restricting

to embedding tensors that satisfy the corresponding linear constraints (2.16) and (2.12),

respectively.

The same superconformal gaugings can therefore be obtained in a methodical way from

two independent and rather different approaches. In supergravity, the phenomenon of su-

persymmetry enhancement does not exist: one can not adjust the couplings of e.g. N = 3

supergravity to obtain an N = 4 theory. This can for example be seen from the different

supergravity multiplets: the number of gravitini is different for these theories. Neverthe-

less, the classification of supergravity gaugings reduces in the conformal limit to the same

classification of superconformal gaugings that has been obtained from a global supersym-

metry viewpoint. It is interesting to see that the analogous results have been obtained

independently on the local and the global supersymmetry side. Using the conformal limit

these two approaches can be related.

3. Solving the constraints

In this section we will show how to solve systematically the linear and quadratic constraints.

We will first explain the general strategy and next discuss the cases for different values of

– 9 –
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N separately. Recently [20], a classification of the different superconformal theories has

been given starting from N = 4 supersymmetry with special matter multiplets and making

use of a relation with Lie superalgebras [16]. An alternative derivation for N = 6, of a

more group-theoretical nature, can be found in [22]. Here we will use an approach directly

based on the embedding tensor. Based on the relation with Lie superalgebras we will also

uncover new N = 4, 5 superconformal gaugings that correspond to exceptional cases.

Our starting point is an embedding tensor that has only directions in the global symme-

try group G. The purpose of the embedding tensor is to project the Lie algebra generators

of the global symmetry group onto the generators of the subgroup which is gauged. As

explained in the previous section, this tensor must satisfy certain linear and quadratic con-

straints. Our strategy is to start from an embedding tensor which projects onto a given

subgroup such that the quadratic constraint is automatically satisfied. In this case, the

linear constraint becomes a non-trivial identity which decides if the gauging is a viable one.

For the classical Lie groups we will use the standard invariant tensors δab = δba (orthog-

onal groups) , δa
b (unitary groups) and Ωab = −Ωba (symplectic groups). Here δ denotes

the Kronecker delta and Ω the anti-symmetric symplectic tensor with inverse tensor Ωab,

i.e. Ωac Ωbc = δa
b. Besides these tensors we will also use special invariant tensors in the

case of SO(4), SO(7) and G2 which will lead to the new N = 4, 5 superconformal theories.

Our first task is to construct, using the invariant tensors, the operators that project the Lie

algebra generators of the global symmetry group onto the generators of the subgroup which

is gauged. Furthermore we will also need the operators that project onto the singlet rep-

resentation. These operators will be the building blocks from which we will construct the

embedding tensor. In the case of the classical orthogonal, unitary and symplectic groups

these building blocks are given by:

SO(N) singlet: δab δcd , SO(N) adjoint: δc[a δb]d ,

SU(N) singlet: δa
b δc

d , SU(N) adjoint:

(

δc
b δa

d −
1

N
δa

b δc
d

)

,

Sp(N) singlet: Ωab Ωcd , Sp(N) adjoint: Ωc(a Ωb)d . (3.1)

For SO(4) there is an additional operator that projects onto the adjoint representation

given by

SO(4) adjoint: ǫabcd . (3.2)

This operator will be needed in the construction of the N = 8 and one of the exceptional

N = 4, 5 superconformal theories.

Typically we will need to split the index a according to a pair of indices (i, ī):

a → (i, ī) with i = 1, . . . ,m ; ī = 1, . . . , n , (3.3)

corresponding to a bi-fundamental representation. These cases will be referred to as matrix

models. Clearly, n = 1 is a special case for which the matrix reduces to a vector, and the

indices a and i coincide. In principle one could consider the index a to represent a sum of

an arbitrary set of representations of the gauge group other than those described above,
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but in accordance with the Lie superalgebra approach of Gaiotto and Witten [16] we do

not find such solutions.

Having satisfied the quadratic constraint by employing the above building blocks, we

now discuss the solution of the linear constraint for the different cases with decreasing

number of supersymmetries separately. From the structure of globally supersymmetric

theories (in contrast to supergravity), it is clear that theories with N supercharges can be

seen as particular examples of theories with lower N . For this reason we will not repeat

the higher N examples when discussing the lower N theories.

N = 8 superconformal gaugings: in this case the embedding tensor contains only

one irreducible component under SO(N), that is the 4-index anti-symmetric tensor Θab,cd =

Θ[ab,cd]. Therefore, one cannot use the Kronecker delta δab within Θ.

One possibility is to make use of the special operator given in (3.2) and write

Θab,cd = g ǫabcd , (3.4)

for arbitrary coupling constant g. This restricts to N = 4 and SO(4) gauging.

Another possibility is to consider a symplectic gauging and to construct an invariant

embedding tensor of the form Θab,cd ∼ Ω[abΩcd]. However, according to eq. (3.1) this is

not an Sp(N) projection operator. Therefore, the quadratic constraint will not be satisfied

and one cannot consider this possibility. We conclude that for N = 8 one can only gauge

SO(4) or multiple copies thereof.5

N = 6 superconformal gaugings: in this case we are dealing with an embedding

tensor Θa
b
, c

d that satisfies the linear constraint (2.16). Since the embedding tensor has

both upper and lower indices we can use the invariant Kronecker delta δa
b to build expres-

sions for Θ. This does not restrict to particular values of N . That is the basic reason why

for N = 6 one can obtain gaugings for arbitrary N [24].

The easiest way to find a solution that satisfies the linear constraint is to take

Θa
b
,c

d = g δ[a
[d δc]

b] =
g

2

(

δc
b δa

d −
1

N
δa

b δc
d

)

−
(N − 1)

N

g

2
δa

b δc
d , (3.5)

for arbitrary coupling constant g. The singlet operator becomes a U(1) projection operator.

For N > 1 this picks out all generators of U(N) and leads to a gauging of the full U(N)

group. Note that, in order to satisfy the linear constraint (2.16), we must take a specific

combination of the SU(N) and U(1) operators. By taking multiple copies thereof one

obtains vector models with U(m1) × U(m2) × · · · gauging, where m1 +m2 + . . . = N .

We next consider a matrix model describing the embedding U(m)×U(n) ⊂ U(N = mn)

such that the scalars transform in the bi-fundamental representation (m,n). We first try

an embedding tensor that contains products of adjoints with singlets. However, one finds

5Note that the gauging of a G2 ⊂ SO(7) subgroup in the N = 8 case is not possible because, although

Cabcd is a totally anti-symmetric invariant tensor of G2, and thereby satisfying the linear constraint (2.12),

it does not projects onto G2. On the other hand, the combination δa[cδd]b + 1
4

Cabcd does project onto G2

but it does not satisfy the N = 8 linear constraint [23].
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that one can not satisfy the linear constraint (2.16) with this Ansatz. For this we need to

add a common U(1) factor that acts on both factors. We thus obtain

Θ(i,̄i)
(k,k̄)

, (j,j̄)
(l,l̄) = g δ̄i

k̄δj̄
l̄

(

δi
lδj

k −
1

m
δi

kδj
l

)

− gδj
lδi

k

(

δj̄
k̄ δ̄i

l̄ −
1

n
δ̄i

k̄δj̄
l̄

)

−
(m− n)

mn
g δi

kδj
lδ̄i

k̄δj̄
l̄ , (3.6)

for arbitrary coupling constant g. We deduce that the unitary matrix model desribes an

SU(m) × SU(n) × U(1) gauging, corresponding to the U(m|n) model of [20]. For m = n,

in which case the U(1) factor vanishes [22], this is the ABJM model of [19] .

Finally, we consider symplectic gaugings. Note that we can now raise and lower indices

using the symplectic tensor. We first try an embedding tensor that only contains the adjoint

of Sp(n). However, this does not satisfy the linear constraint (2.16) and we must add an

additional U(1) factor:

Θab,cd = gΩabΩcd − g
(

ΩcaΩbd + ΩcbΩad

)

, (3.7)

where the first term on the right-hand-side corresponds to the U(1) gauging and where

the term between round brackets corresponds to the Sp(n) gauging. This is precisely the

so-called OSp(2|n) model of [20].

N = 5 superconformal gaugings: the global symmetry group for N = 5 is Sp(N).

We first try to gauge the full Sp(N) using the Ansatz

Θab,cd = g Ωc(a Ωb)d , (3.8)

with arbitrary coupling constant g. This indeed solves the linear constraint (2.20) and leads

to a vector model with Sp(N) gauging. Similarly, one can take multiple copies thereof with

Sp(N1) × Sp(N2) × · · · gauging with N1 +N2 + . . . = N .

It turns out that the vector model is a special case of a matrix model with SO(m) ×

Sp(n) gauging. The corresponding embedding tensor solving the linear constraint is given

by

Θ(īi)(jj̄),(kk̄)(ll̄) = g
(

δk[i δj]l Ωīj̄ Ωk̄l̄ + δij δkl Ωk̄(̄i Ωj̄)l̄

)

, (3.9)

for arbitrary coupling constant g. This is precisely the so-called OSp(m|n) model of [20].

Note that the relative strength between the SO(m) and Sp(n) terms is fixed by the linear

constraint (2.20). Matrix models with SO(m)×SO(n) or Sp(m)×Sp(n) gauging cannot be

constructed simply because one cannot embed these in the global symmetry group Sp(N).

To construct further solutions of the constraint (2.20), we use a method that exploits

a link with certain type of superalgebras, as observed in [16]. Accordingly, we look for a

superalgebra with (anti-)commutation rules of the form

{Qa, Qb} = (tα)abTα , [Tα, Qa] = ηαβ(tβ)abQ
b , (3.10)

where ηαβ is the Cartan-Killing metric. Then, an embedding tensor defined as

Θab,cd = (tα)ab(t
β)cd ηαβ , (3.11)
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is guaranteed to satisfy the linear constraint (2.20) as a consequence of the Jacobi identity

[{Qa, Qb}, Qc] + perms = 0. Applying this to the exceptional Lie superalgebras6 as pre-

sented in [39] in a convenient notation, we find the following three additional solutions to

the constraints of the embedding tensor for N = 5.

In the case of the Lie superalgebra F (4), the embedding tensor reads (where i, j, . . .

refer to the spinor representation 8 of SO(7) and α, β, . . . denote an SU(2) doublet)

Θiα jβ,kγ lδ = 1
12Γmn

ij Γmn
kl ǫαβǫγδ + δijδklǫγ(αǫβ)δ , (3.12)

with SO(7) Gamma-matrices Γm. This provides a solution to the linear constraint (2.20)

and gives rise to a gauging of SO(7) × SU(2).

The second possibility corresponds to the Lie superalgebra G(3). The embedding

tensor is given by (where i, j, . . . refer to the fundamental representation 7 of G2 and

α, β, . . . denote an SU(2) doublet)

Θiα jβ,kγ lδ =

(

δi[kδl]j +
1

4
Cijkl

)

ǫαβǫγδ + δijδklǫγ(αǫβ)δ , (3.13)

where Cijkl is the invariant tensor of7 G2. This leads to a G2 × SU(2) gauge group.

Finally, the Lie superalgebra D(2|1;α) (referred to as OSp(4|2;α) in [39]) gives a

deformation of the SO(4) × Sp(1) gauging with embedding tensor

Θiα jβ,kγ lδ = (δi[kδl]j + γ/2 ǫijkl) ǫαβǫγδ + δijδklǫγ(αǫβ)δ , (3.14)

with i, j,= 1, . . . , 4 of SO(4) and α, β = 1, 2 of SU(2). This example corresponds to a

deformation of the gauging of SO(4)× Sp(1) in the OSp(4|1) model. In standard notation

D(2|1, α), α corresponds to the ratio (1+γ)/(1−γ) of the two coupling constants of SO(4).

N = 4 superconformal gaugings: a noteworthy feature of the case of four super-

symmetries is that there is a direct product structure. Each factor has an R-symmetry

Sp(1) and a global symmetry group Sp(N). To distinguish the first sector from the sec-

ond, so-called “twisted” sector, we use a indices for Sp(N) and a′ for the twisted Sp(N ′).

We already mentioned that there are three kind of embedding tensors: those with only

a-indices, those with only twisted a′-indices and mixed embedding tensors with a and a′

indices.

Restricting first to the untwisted sector, the set of possible models coincides with those

described above for N ≥ 5. The reason is that the N = 4 linear constraint coincides with

that of N = 5. Hence for every solution with N ≥ 5 there is a corresponding solution with

6This method applied to the Lie superalgebra U(m|n) (denoted by spl(m,n) in [39]) gives the N = 6

and N = 8 solutions, and the superalgebra OSp(m|n) gives the N = 5 solutions already discussed above.

There exist two other classes of Lie superalgebras, referred to as “strange superalgebras” in [40] and denoted

by P (n) and Q(n). However, as the structure constants of these algebras do not fit the pattern exhibited

in (3.10), the associated Jacobi identities do not correspond to the constraints on the embedding tensor.

As such, these algebras do not give new solutions.
7In showing that the structure constants of G(3), which can be found in [39], have the required

form (3.10), it is important to note that the Cartan-Killing form of G2 involves the invariant tensor Cijkl.
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N Θ gauge group Lie superalgebra

4, 8 (3.4) SU(2) × SU(2) U(2|2)

4, 6 (3.6) SU(m) × SU(n) × U(1) U(m|n)

4, 6 (3.7) SO(2) × Sp(n) OSp(2|n)

4, 5 (3.9) SO(m) × Sp(n) OSp(m|n)

4, 5 (3.12) SO(7) × SU(2) F (4)

4, 5 (3.13) G2 × SU(2) G(3)

4, 5 (3.14) SO(4) × Sp(1) D(2|1;α)

Table 3: The equation number of the embedding tensor and gauge group of different superconfor-

mal models for 4 ≤ N ≤ 8 and the associated Lie superalgebra. In the second entry, when m = n

the U(1) factor drops out. For N = 4 we only give the untwisted models; when including the twisted

sector non-trivial couplings such as (3.15) or (3.16) can also be introduced. For N ≤ 3, there are

no restrictions on the gauge group. All these models also have the superconformal symmetry based

on the Lie superalgebra OSp(N|4).

N = 4. The two classes with SO(m)×Sp(n) and SU(m)×SU(n)×U(1) were first described

by [16]. In addition to these two regular classes, the three exceptional cases that occurred

in N = 5 also make their appearance in N = 4. The expressions for the embedding tensor

are identical to their N = 5 counterparts.

The situation changes if we also include the twisted sector [18]. First of all, a relatively

trivial possibility is to include this without coupling to the untwisted sector. This allows

for additional gaugings parametrised by Θa′b′,c′d′ , which also has to be of one of the above

forms. More interesting is the possibility to couple to two sectors, using the off-diagonal

components Θab,c′d′ = Θc′d′,ab. It is impossible to excite this component for generic gaugings

in the untwisted and twisted sector; it can easily be seen that there are no possible terms

with the correct symmetry properties. Indeed, an identification has to be made between

the gaugings in the two sectors, as we will now illustrate.

For concreteness we will specify to an SO(m)× Sp(n) and SO(m′)× Sp(n′) gauging in

both sectors, respectively. Upon identification of the two orthogonal sectors, i.e. SO(m) ≃

SO(m′), one needs to include an off-diagonal term (where a = {i, ī} and a′ = {i′, ī′} and

i ≃ i′)

Θab,c′d′ = g δk′[i δj]l′ Ωīj̄ Ωk̄l̄ . (3.15)

This corresponds to a gauge group Sp(n)×SO(m)×Sp(n′), where the (twisted) hypermul-

tiplets are in the bifundamental of the first (last) two factors. Similarly, upon identification

of the two symplectic sectors, i.e. Sp(n) ≃ Sp(n′), the following off-diagonal term has to
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be included (where a = {i, ī} and a′ = {i′, ī′} and ī ≃ ī′)

Θab,c′d′ = g δij δk′l′ Ωk̄′(̄i Ωj̄)l̄′ . (3.16)

In this case the gauge group is SO(m)×Sp(n)×SO(m′) where again the (twisted) hypermul-

tiplets are in the bifundamental of the first (last) two factors. By subsequent applications

of this construction one can obtain an (in)finite SO(m1)×Sp(n1)×SO(m2)×Sp(n2)×· · ·

gauge group [18].

A distinct possibility is to identify both gauge groups, i.e. SO(m) ≃ SO(m′) and

Sp(n) ≃ Sp(n′). In this case one needs the off-diagonal component to consist of both

terms discussed above:

Θab,c′d′ = g δk′[i δj]l′ Ωīj̄ Ωk̄l̄ + g δij δk′l′ Ωk̄′(̄i Ωj̄)l̄′ . (3.17)

Note that this leads to Θab,cd = Θab,c′d′ = Θa′b′,c′d′ . In this case the untwisted and twisted

hypermultiplets naturally combine into N = 5 multiplets and one finds supersymmetry

enhancement [20], in this case to the solution (3.9).

A similar story holds for the SU(m) × SU(n) × U(1) gauging, where one can also

employ the twisted sector to obtain a chain of unitary gauge groups [18]. In addition, the

identification of both unitary groups in the untwisted and twisted sector leads to N = 6

supersymmetry [20], as the embedding tensor automatically satisfies the corresponding

linear constraint (2.16). Finally, one can construct couplings between the untwisted and

twisted sector in the case that these are given by one of the three exceptional cases.

N ≤ 3 superconformal gaugings: from the gauged supergravity models with N =

1, 2 or 3 supersymmetries it follows that there is no linear constraint. Therefore, there

is no restriction on the gauge group and matter content. Furthermore, superconformal

field theories with polynomial interactions not based on a gauging, and hence without

Chern-Simons terms, are known to exist for N = 1, 2 [34 – 36]. We expect them to arise

in the global limit of N = 1, 2 supergravities with interactions that do not follow from

gauging [28]. In fact, both type of interactions, namely those which are tied to gauging

and the others which are independent of gauging, can simultaneously arise in the N = 1, 2

superconformal field theories.

This finishes our discussion of how the constraints are solved for different values of N .

For the convenience of the reader the different possibilities are summarised in table 3.

4. An example: the N = 6 superconformal theory

In this section we will present more details on our construction for the specific case of

N = 6. The gauged supergravity theories in three dimensions take the general form [28]

L = L0 − eV (4.1)

+e

{

1

2
AIJ,KL

1 Ψ̄µ IJΓµν Ψν KL +A2
a
I
JK Ψ̄µ JKΓµψI

a +
1

2
A bI

3 aJ ψ̄
a
Iψ

J
b + h.c.

}

,
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where L0 is the part consisting of the kinetic terms, the Chern-Simons term and quar-

tic fermion interactions. The fermions are the gravitini Ψµ IJ and the spinors ψI
a, and

A1, A2, A3 are complicated functions of the scalar fields belonging to the cosets (2.1) sum-

marised in table 1, and the scalar potential V consists of a sum of squares of A1 and A2.

Performing the conformal limit described in section 2.2 produces the superconformal field

theories in which only gauge invariant kinetic terms for a suitable number of scalars and

spinors, along with a potential for the scalars, Yukawa terms and a Chern-Simons term

survive. In particular, the conformal truncations of the functions A2 and A3 survive the

limit, while A1 disappears (although it does play an important role in determining the

possible massive deformations of the conformal field theory [24]).

Instead of performing the steps outlined above, knowing the structure of the terms that

survive the conformal limit, we have directly constructed the superconformal Lagrangian

by the Noether procedure. We have done so independently of the results that appeared in

the course of our work. Indeed, the N = 6 superconformal gauge theory was first discussed

in [19]. Its N = 2 superspace formulation was presented in [37]. The explicit form of the

supersymmetry rules have first been given in [38, 20].

The theory contains 4N complex scalars XaI , where I, J, . . . = (1, . . . , 4) and a, b, . . . =

(1, . . . , N), together with their complex conjugates (XaI)
∗ = XaI . They transform in

the (4, N) fundamental representation of SU(4) × U(N). The fermions are given by two-

component Dirac spinors ψa
I describing 4N complex fermionic degrees of freedom.8

The corresponding action can be obtained by taking the conformal limit of N = 6

supergravity. In this limit the scalar manifold reduces to a flat space, and thus in the

ungauged case this results in the free Lagrangian [24]

L = −
1

2
∂µXaI∂µXaI +

1

2
ψ̄I

aγ
µ∂µψ

a
I , (4.2)

which exhibits N = 6 superconformal symmetry.

The conformal limit in the gauged case then corresponds to a gauging of (4.2). Its

action takes the general form

L = −
1

2
DµXaIDµXaI +

1

2
ψ̄I

aγ
µDµψ

a
I + LY

−
1

2
εµνρAµ

αΘαβ

(

∂νAρ
β −

1

3
Θγδf

βδ
ǫAν

γAρ
ǫ

)

−
1

3
A2

a
I
JKA2 a

I
JK , (4.3)

where the Yukawa couplings LY are determined by the global limit of A3. These couplings

and the function A2 that determines the potential will be specified below. Note that gauge

vectors are introduced via covariant derivatives and a Chern-Simons term. The covariant

derivatives of the scalars are defined as follows

DµXaI = ∂µXaI − Θa
b
, c

dAµd
cXbI ,

DµX
aI = ∂µX

aI + Θb
a
, d

cAµc
dXbI ,

(4.4)

8Our representation assignment for the scalars and spinors differ from those that have appeared in the

literature where (4, N̄) and (4, N), respectively, are used.
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and a similar definition applies to the covariant derivatives of the spinors. Here, we have

used that the U(N) gauge fields are anti-Hermitian, (Aµ a
b)∗ = −Aµ b

a and the embedding

tensor Hermitian, (Θa
b
,c

d)∗ = Θb
a
,d

c. The Yukawa couplings read explicitly

LY = −
1

2
Θa

b
, c

dXdIX
cJ ψ̄I

bψ
a
J +

1

4
Θa

b
, c

dXd
cψ̄I

bψ
a
I

+
1

8

(

ǫIJKLΘc
a
, d

bXIcXJdψ̃K
a ψ

L
b + h.c.

)

,

(4.5)

where ψL
b = (ψb

L)⋆ and ψ̃K
a is defined in the appendix. Note that conformal invariance

forbids the occurrence of quartic fermion terms. Finally, the tensor A2
a
I
JK defining the

scalar potential is given by

A2
a
I
JK(X) = −

1

2
Θb

a
, c

d
(

XbJXcKXdI + δI
[JXK]bXd

c
)

, (4.6)

where we have used the abbreviation Xa
b ≡ XaIX

bI , and A2a
I
JK ≡ (A2

a
I
JK)∗.

The supersymmetry transformations leaving invariant (4.3) are given by

δXaI = ǭIJψa
J ,

δψa
I = γµDµX

aJ ǫIJ +A2
a
I
JK(X)ǫJK , (4.7)

δAµa
b =

1

2
ψ̄I

aγµX
bJǫIJ − h.c. ,

where the supersymmetry parameter ǫIJ is in the real antisymmetric representation of

SU(4) and satisfies a reality condition, see (A.4). They leave (4.3) invariant, provided the

embedding tensor satisfies the linear constraint (2.16) and the quadratic constraints (2.18).

Note that the action takes a ‘universal’ form in terms of the embedding tensor in that any

particular gauging corresponds to a specific choice of Θ in (4.3), subject to the linear and

quadratic constraints (2.16) and (2.18), respectively.

It is instructive to verify the supersymmetry of the action corresponding to (4.3). The

lowest-order supersymmetry variation of the kinetic terms no longer vanishes due to the

non-commutativity of the covariant derivatives. Up to a total derivative we obtain

δLkin =
1

4
Θb

a
,d

cψ̄I
aγ

µνFµν c
dXbJ ǫIJ . (4.8)

These variations are canceled by the supersymmetry variation of the gauge vectors in the

Chern-Simons term. The variation of the gauge vectors inside the covariant derivatives

gives rise to additional contributions linear in Θ. These are canceled by taking the Θ-

dependent terms (parameterized by A2) of δψa
I in the variation of the fermion kinetic term

and by taking the Θ-independent term in the variation of the fermions in the Yukawa

terms. This cancelation takes place provided the linear constraint (2.16) on Θ holds.

We next consider the variations quadratic in Θ. The variation of the Yukawa couplings

leads to two types of terms, ψ̄I
aǫJK and ψ̄I

aǫIJ , i.e. with uncontracted or contracted SU(4)

indices. The former terms cancel among themselves, which can be proven upon using

linear combinations of the quadratic constraints (2.18) with different index permutations.

Similarly, the latter terms cancel against the variations of the scalar potential.
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Let us finally note that the supersymmetric actions for all N ≤ 5 take the same uni-

versal form as (4.3), in which the Yukawa couplings and scalar potential are parameterized

by the tensors A2 and A3 that can be obtained from the supergravity models of [28] as

in [24]. As mentioned earlier, in the case of N = 1, 2 special features arise due to the fact

that the supergravity theories admit interactions that are independent of gauging as well

[28].

We also note that all of the actions described in this paper, for which N ordinary

supersymmetries are explicitly given, are also invariant under special supersymmetries,

dilatation and conformal boosts, in addition to the manifest R-symmetry groups HR (see

table 2). Altogether these form the superconformal group OSp(N|4). The symmetry

transformations other than the ordinary supersymmetries are not repeated here (see, for

example, [7]).

5. Discussion

In this work we used the three-dimensional gauged supergravity models of [27, 28] to ob-

tain information about superconformal gauge theories in three dimensions for an arbitrary

number N ≤ 8 of supersymmetries. The embedding tensor characterizing the supercon-

formal theory satisfies a linear and a quadratic constraint. For each solution of these

constraints one obtains a consistent gauging. We solved the constraints using a simple

tensor analysis and presented the gauge groups and matter content of the different su-

perconformal theories. We find all the superconformal theories that occur in the recent

classification of [16, 18, 20, 22]. On top of that we find three new superconformal theories

with N = 4, 5 supersymmetry. These latter cases are suggested by the relation with the

Lie superalgebras [16].

The supergravity approach allows to construct non-conformal gaugings and deforma-

tions as well [24]. These include (1) massive deformations of the superconformal theories

and (2) standard Yang-Mills gauge theories. The massive deformations occur in two types:

(1a) scalar massive deformations and (1b) vector massive deformation. In the former case

one introduces mass parameters for a number of scalar fields. In the latter case one gauges

translations corresponding to a number of scalar fields. This requires the introduction of

new gauge vector fields, with a corresponding Chern-Simons term. In the gauge where

the scalars are vanishing, the vector fields obtain a mass term in addition to their Chern-

Simons term. By taking a non-conformal limit of gauged supergravity it can be shown that

the scalar and vector mass parameters of the N = 8 superconformal theory occur in the

following representations of the R-symmetry group SO(8) [24] :

scalar masses : 35s , vector masses : 35v . (5.1)

Decomposing into SU(4)×U(1) and projecting onto U(1) singlets suggests that the N = 6

superconformal theory can be deformed by the following representations of the SU(4) R-

symmetry group :

scalar masses : 15 , vector masses : 15 . (5.2)
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Similarly, this leads one to expect the following representations of the Sp(2) R-symmetry

group for N = 5:

scalar masses : 5 , vector masses : 5 . (5.3)

The presence of a scalar mass term breaks the R-symmetry group to SO(4)×SO(N−4) [29,

30, 20, 31]. Continuing to lower N one could in this way classify massive deformations

of all superconformal theories. It would be interesting to construct these deformations by

taking the non-conformal limit of the gauged supergravity models of [28] and study their

interplay with conformal and non-conformal gaugings.
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A. Notations and conventions

This appendix contains information about the notation and conventions pertaining to the

N = 6 theory discussed in section 4.

We choose the space-time metric to be η = diag(−+ +). The gamma matrices satisfy

the Clifford algebra {γµ, γν} = 2ηµν and obey the identities

(γµ)† = γ0γ
µγ0 , (γµ)T = −CγµC−1 , (γµ)∗ = BγµB−1 , (A.1)

where CT = −C is the charge conjugation matrix and B = −Cγ0. Note that C†C =

1 , C∗ = −C−1 and B∗B = 1. In case of U(N) symmetry, we use complex notation,

i.e. the spinor fields are two-component Dirac spinors. A single Dirac spinor describes 2

real physical degrees of freedom. We define the Dirac conjugate as

ψ̄I
a = (ψa

I )† iγ0 , (A.2)

such that ψ̄ψ is a (real) Lorentz scalar. For Dirac spinors there is a second bilinear invariant,

defined by

ψ̃a
Iψ

b
J = i

(

ψT
)a

I
Cψb

J and ψ̃I
aψ

J
b = i

(

ψT
)I

a
C−1ψJ

b , (A.3)
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where ψI
a = (ψa

I )⋆. In case of Majorana spinors, satisfying ψ̄ = ψTC, the two invariants

defined in (A.2) and (A.3) coincide. The supersymmetry parameter satisfies a reality

condition in order to be compatible with N = 6 supersymmetry,

(ǫIJ)⋆ = ǫIJ =
1

2
B εIJKLǫKL . (A.4)

Using this reality constraint, the supersymmetry transformation of the complex conjugate

spinor ψI
a for N = 6 reads

δǫψ
I
a =

1

2
B

(

εIJKLγµDµXaJ + εKLPQĀ2a
I
PQ

)

ǫKL . (A.5)
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